Control of Modular Multilevel Converters Using an Overlapping Multi- Hexagon Space Vector Modulation Scheme
نویسندگان
چکیده
Adapting the conventional Space Vector modulation (SVM) scheme for modular multilevel cascaded converters is complicated as the number of switching vectors increases with the number of voltage levels. This paper introduces a novel SVM scheme that can be applied for the control of modular multilevel cascade converters (MMCC) with any number of levels. Instead of extending a single hexagon to the regions corresponding to the number of levels, the proposed method treats the three-phase MMCC as multiple inverters with a phase limb being a chain of basic three level H-bridge, five-level flying capacitor, or neutral point clamped inverters. Basic two or three level hexagons can be applied to determine the switch states and duty cycles separately within one tier of the converter and many such hexagons can be overlapped, with phase shift relative to each other, for the control of a complete MMCC. This approach simplifies the modulation algorithm and brings flexibility in shaping the output voltage waveforms for different applications. Simulation results confirm the good waveform performance of this scheme. An experimental 5-level MMCC, with a total of six H-bridges as the basic modules, is presented to validate the advantageous features of the method.
منابع مشابه
Conduction and Dead-Time Voltage Drops Estimation of Asymmetric Cascaded H-Bridge Converters Utilizing Level-Shifted PWM Scheme
Linear AC power supplies can be replaced by their nonlinear switching counterparts due to the lower voltage drops and higher efficiency and power density of switching-mode inverters. Multilevel cascaded H-bridge (CHB) converters are the preferred inverter structure because of modular configuration, control, and protection. The output voltage quality in CHB converters depends on the number of ou...
متن کاملSpace Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters
Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is 
its complex and time-consuming computations in real-time ...
متن کاملSpace Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters
Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is its complex and time-consuming computations in real-time im...
متن کاملA Modified Phase-Shifted Pulse Width Modulation to Extend Linear Operation of Hybrid Modular Multi-level Converter
Recently, hybrid modular multi-level converters, which are configured as full and half bridge sub-modules, are developed and utilized in the wide area of applications. Compared to its non-hybrid counterpart, these converters have several advantages such as the ability to nullify the DC side fault current and controlling AC side reactive power during the faults. This paper proposes a modified ph...
متن کاملDesign and Performance Analysis of 7-Level Diode Clamped Multilevel Inverter Using Modified Space Vector Pulse Width Modulation Techniques
In this paper, a 7-level Diode Clamped Multilevel Inverter (DCMLI) is simulated with three different carrier PWM techniques. Here, Carrier based Sinusoidal Pulse Width Modulation (SPWM), Third Harmonic Injected Pulse Width Modulation (THIPWM) and Modified Carrier-Based Space Vector Pulse Width Modulation (SVPWM) are used as modulation strategies. These modulation strategies include Phase Dispos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018